E fficient synthesis of 0-(2-acetamido-2-deoxy- β-d-glucopyranosyl)serine and -threonine building blocks for glycopeptide formation \dagger

Uttam K. Saha and Richard R. Schmidt*
Fakultät Chemie, U niversität K onstanz, Postfach 5560 M 725, D-78434 K onstanz, Germany

Abstract

G lucosamine donors 1-3 having N-TCP, N,N-diacetyl and N-Teoc protection, respectively, give with \mathbf{N}^{α}-B oc-protected serine and threonine benzyl esters 4a,b as acceptors exclusively the β-glycosides; they can be transformed into 0-G IcN A c serine and threonine derivatives 8a,b. The high yielding 0 -glycosylation of compounds $4 a, b$ with trichloroacetimidate 3 and the ease of replacement of the N -Teoc group by the N -acetyl group prompted the use of $\mathbf{N}^{\text {a }}-\mathrm{F}$ moc-protected serine and threonine allyl ($9 \mathrm{a}, \mathrm{b}$) and Pfp active esters (12a,b) as acceptors, thus very efficiently yielding the corresponding 0-($\mathrm{N}, 0-$ acetylglucosamino) serine and threonine derivatives $11 \mathrm{a}, \mathrm{b}$ and $14 \mathrm{a}, \mathrm{b}$ as active esters.

Introduction

Intracellular posttranslational protein glycosylation, through which N-acetylglucosamine (GIcNAc) residues are β-glycosidically linked to the hydroxy group of serine and/or threonine, has been observed for some time. ${ }^{1}$ R ecently, it has been shown that the β-amyloid precursor protein (APP), which is associated with A Izheimer's disease, is also posttranslationally modified by $0-\mathrm{GIcNAc}$ residues. ${ }^{2}$ The specific functions of $0-\mathrm{GIcNAc}$ attachment to proteins have not yet been fully elucidated. Indirect evidence led to the hypothesis that the 0-G IcN A c linkage may often have a reciprocal relationship to the regulatory effect of protein phosphorylation. ${ }^{3}$ Therefore, access to glycopeptides carrying β-linked $0-\mathrm{GIcNA}$ c residues became of great interest. ${ }^{4-6}$

Still the most efficient approach to glycopeptide synthesis is based on O -acyl-protected O - or N -glycosyl amino acid active esters, for instance $\mathrm{N}^{\text {a }}$-fluorenylmethoxycarbonyl amino acid pentafluorophenyl esters (N^{a} - $\mathrm{Fmoc-AA-OPfp)}$, ${ }^{7-10}$ which are used as building blocks for the stepwise construction of glycopeptides at a solid phase. Therefore, efficient access to Nprotected serine and threonine active esters already possessing O-linked GIcNAc residues, as described in this report, eases glycopeptide synthesis. Based on the N-allyloxycarbonyl (Aloc) group and the N -dithiasuccinoyl (Dts) group a similar approach has been recently reported. ${ }^{4,5}$ H owever, not only the ease of formation of the glycosyl donor but also the stability of the N -protecting group, required for activation in the glycosylation step, and a direct and high yielding transformation of 0 -glycosyl amino acid active esters into the corresponding $0-\mathrm{GlCNAc}$-containing compounds are important aspects in this endeavour. M ethods for the synthesis of glucosaminecontaining serine and threonine derivatives, in which the N -acetyl group is generated only after glycopeptide synthesis, have also been reported. ${ }^{5,8,11,12}$

Results and discussion

Glucosamine can be readily transformed into glycosyl donors 1-3, ${ }^{13-15}$ they exhibit high glycosyl-donor properties because formation of stable oxazolinium intermediates is prevented by the presence of strongly electron-withdrawing groups; yet high β-selectivity can still be expected through neighbouring-group participation. Thus, reaction of N -tetrachlorophthaloyl (TCP)protected glycosyl donor $\mathbf{1}^{13}$ with N -tert-butoxycarbonyl (BOC)-

[^0] For Part 76, see ref. 13b.
protected serine and threonine benzyl esters $\mathbf{4 a}, \mathbf{b}^{16}$ furnished, in the presence of catalytic amounts of trimethylsilyl trifluoromethanesulfonate (TM SOTf, 0.01 mol equiv.), as expected the β-anomers $5 \mathbf{a}$,b in 75% yield ($1-\mathrm{H}: \mathbf{5 a}: \delta_{\mathrm{H}} 5.34, \mathrm{~J}_{1,2} 8.4 \mathrm{~Hz} ; \mathbf{5 b}$: δ_{H} $5.3, J_{1,2} 8.3$). H owever, the removal of the $N-T C P$ group with ethylenediamine at $60^{\circ} \mathrm{C}^{17}$ and then per-acetylation with acetic anhydride in pyridine, to afford target molecules 8a,b, was not satisfactory; various by-products were formed (Scheme 1).

The N, N-diacetyl thioglycoside $\mathbf{2}^{14}$ was activated by N -iodosuccinimide ($\mathrm{NIS}, 1.5 \mathrm{~mol}$ equiv.) and TfOH (0.01 mol equiv.), giving, by reaction with acceptors $4 \mathbf{a}, \mathbf{b}$, the desired β-glycosides $6 \mathbf{a}, \mathbf{b}$ in only 50% yield (1-H:6a: $\delta_{\mathrm{H}} 5.32, \mathrm{~J}_{1,2} 7.8 ; 6 \mathrm{~b}: \delta_{\mathrm{H}} 5.3, \mathrm{~J}_{1,2}$ 7.7). One of the observed side-reactions is acetyl transfer to the acceptor, as previously observed. ${ }^{14} \mathrm{H}$ owever, selective removal of one N-acetyl group in compounds $\mathbf{6 a}, \mathbf{b}$ could be readily performed with sodium methanolate in methanol; ensuing 0 -acetylation afforded compounds $\mathbf{8 a}, \mathbf{b}$ in very high yield.
The best results in terms of overall yield and conveniency of the experimental procedures were obtained with N -trichloroethoxycarbonyl (Teoc) ${ }^{18}$-protected trichloroacetimidate $3^{15,19}$ as glycosyl donor; addition of catalytic amounts of TM SOTf (0.01 mol equiv.) afforded, with acceptors $\mathbf{4 a}, \mathbf{b}$, the β-glycosides $7 \mathrm{a}, \mathrm{b}$ in 80% yield (1-H: 7a: $\delta_{\mathrm{H}} 4.61, \mathrm{~J}_{1,2} 8.3 ; 7 \mathrm{~b}: \delta_{\mathrm{H}} 4.53, \mathrm{~J}_{1,2} 8.1$). Direct replacement of the N -Teoc group by the N -acetyl group, by treatment with zinc in acetic anhydride, ${ }^{15 b}$ gave compounds 8a,b in 85% yield; therefore, this method seemed to be suitable for the direct generation of $0-\mathrm{GICNA}$ c-containing active esters of serine and threonine.
To this aim, glycosyl donor $\mathbf{3}$ was treated under the same reaction conditions with $\mathrm{N}^{a}-\mathrm{F}$ moc-protected serine and threonine allyl esters $9 \mathbf{a}, \mathbf{b}^{20}$ (Scheme 2), thus permitting manipulations ${ }^{7,8}$ of the product's orthogonal protective group in the presence of an 0 -acetyl-protected GICNA c residue. The desired β-glycosides 10a,b were obtained in this reaction in very high yield (1-H:10a: $\delta_{\mathrm{H}} 4.7, \mathrm{~J}_{1,2} 8.4 ; 10 \mathrm{~b}: \delta_{\mathrm{H}} 4.7, \mathrm{~J}_{1,2} 8.1$); again, transformation into target molecules, compounds 11a,b, could be readily performed with zinc in acetic anhydride. This result encouraged us to use directly N^{a}-F moc-protected serine and threonine Pfp esters 12a,b, ${ }^{21}$ typical active esters, as glycosyl acceptors; again, with Teoc derivative $\mathbf{3}$ in the presence of catalytic amounts of TM SOTf (0.01 mol equiv.) the serine β-glycoside 13a was obtained in 87% yield and the threonine β-glycoside 13b in 80% yield, respectively (1-H: 13a: $\delta_{\mathrm{H}} 4.67, \mathrm{~J}_{1,2}$ 8.2; 13b: $\delta_{\mathrm{H}} 4.72, \mathrm{~J}_{1,2} 8.1$). Their treatment with zinc in acetic anhydride furnished cleanly the target molecules 14a,b in 83 and 80% yield, respectively.
In conclusion, based on N -Teoc-protected trichloroacetimidate $\mathbf{3}$ as glycosyl donor, which is very readily available
D-Glucosamine
Ref. 13 Ref. 14

$\mathrm{TCP}=$

Scheme 1 Reagents, conditions and yields: i, 4a,b, TM SOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp. ($\mathrm{R}=\mathrm{H}, \mathrm{M}$ e: 75%); ii, $\mathrm{H}_{2} \mathrm{~N}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{NH} \mathrm{H}_{2}, \mathrm{THF}-\mathrm{M} \mathrm{eCN}-\mathrm{EtOH}, 60{ }^{\circ} \mathrm{C}$, 6 h; then $\mathrm{Ac}_{2} \mathrm{O}$, pyridine (65%); iii, $4 \mathrm{a}, \mathrm{b}, \mathrm{NIS}, \mathrm{TfOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{R}=\mathrm{H}, \mathrm{Me}\right.$: 50%); iv, $\mathrm{NaOM} \mathrm{e}, \mathrm{MeOH}, \mathrm{Ac} \mathrm{c}_{2} \mathrm{O}$, pyridine (89%); v, $4 \mathrm{a}, \mathrm{b}, \mathrm{TM} \mathrm{SOTf}, \mathrm{Et} 2 \mathrm{O}$, room temp. ($\mathrm{R}=\mathrm{H}, \mathrm{M}$ e: 80%); vi, $\mathrm{Zn}, \mathrm{Ac}_{2} \mathrm{O}(\mathrm{R}=\mathrm{H}, \mathrm{M}$ e: $85 \%)$

Scheme 2 Reagents, conditions and yields: i, $9 \mathrm{a}, \mathrm{b}, \mathrm{TM}$ SOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp. ($\mathrm{R}=\mathrm{H}, \mathrm{Me:} 90 \%$); ii, $\mathrm{Zn}, \mathrm{Ac} \mathrm{c}_{2} \mathrm{O}$, room temp., $6 \mathrm{~h}(\mathrm{R}=\mathrm{H}, \mathrm{Me}$: 85%); iii, 12a,b, TM SOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp. ($\mathrm{R}=\mathrm{H}: 87 \%$; $\mathrm{R}=\mathrm{M} \mathrm{e:} 80 \%$); iv, as for ii ($\mathrm{R}=\mathrm{H}: 83 \%$; $\mathrm{R}=\mathrm{M}$ e: 80%)
from glucosamine, ${ }^{15} \beta$-linked $0-\mathrm{GIcNAc}$ serine and threonine derivatives can be efficiently obtained. M ost importantly, the corresponding N^{a}-F moc-protected Pfp active esters, which can be successfully employed in solid-phase glycopeptide synthesis, ${ }^{4,5,22}$ are also directly and efficiently accessible via this approach.

Experimental

G eneral procedures

${ }^{1}$ H N M R spectra were measured with a Bruker AC 250 M Hz or a Bruker Avance DRX 600 M Hz spectrometer, with tetramethylsilane as internal standard for solutions in deuteriochloro-
form, unless otherwise stated. J -Values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NM R spectra were taken on a Bruker AC (62.68 MHz) spectrometer with ${ }^{13} \mathrm{CDCl}_{3}$ as internal standard ($\delta_{\mathrm{c}} 77.0$) for solutions in deuteriochloroform. For all compounds the assignment of ${ }^{1} H$ NMR spectra was based on chemical-shift correlation (COSY) spectra. The assignment of ${ }^{13} \mathrm{C}$ NMR spectra were based on carbon-proton shift-correlation spectra (HMQC). M ass spectra were measured with a K ratus C ompact M ALDI 1 V5.2.0. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter, and $[a]_{\mathrm{D}}$-values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. TLC was performed on M erck silica gel $60 \mathrm{~F}_{254}$ with detection by charring in sulfuric acid and by UV light when applicable. The silica gel used in column chromatography was M erck 60A, 230400 mesh. The silica gel used for purification of Pfp esters was dried for at least 6 h at $200^{\circ} \mathrm{C}$ prior to use, and ethyl acetate for the same purpose was dried over $3 \AA$ molecular sieves for 24 h prior to use. Dichloromethane was distilled from CaH_{2} and was stored over molecular sieves $3 \AA$ under argon. Concentration were performed under reduced pressure at temperatures $<40^{\circ} \mathrm{C}$. M ps were measured on a G allenkamp melting point apparatus and uncorrected. Light petroleum refers to the fraction with distillation range $35-65{ }^{\circ} \mathrm{C}$.

$\mathrm{N}^{\text {a }}$-(tert-B utoxycarbonyl)-0-(3,4,6-tri-0-acetyl-2-deoxy-2-tetrachlorophthalimido- β - D -glucopyranosyl)-L-serine benzyl ester 5a

To a mixture of compounds $\mathbf{1}(0.71 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathbf{4 a}(0.29 \mathrm{~g}$, 1.0 mmol) in dry dichloromethane (10 ml) was added dropwise a catalytic amount of TM SOTf ($1.66 \mu \mathrm{l}, 0.01 \mathrm{~mol}$ equiv., diluted with 1 ml of dichloromethane). The mixture was left at room temperature for 1 h under N_{2}. It was then neutralized with triethylamine and concentrated under reduced pressure. The thick syrupy residue was purified by flash chromatography [ethyl acetate-light petroleum (3:7)] to afford the title compound 5a ($0.63 \mathrm{~g}, 75 \%$); $[a]_{\mathrm{D}}+22.5$ (c $0.84, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e} \mathrm{e}_{3}\right.$ of Boc), 1.87, 2.0 and 2.07 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAC}$), $3.69\left(1 \mathrm{H}, \operatorname{ddd}, \mathrm{J}_{5,6} 2.4, \mathrm{~J}_{5,6^{\prime}} 4.7\right.$, J J ${ }_{5,4}$ $9.6,5-\mathrm{H}), 3.89\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\beta, \alpha} 2.8, \mathrm{~J}_{\beta, \beta}, 10.2, \beta-\mathrm{H}\right), 4.08-4.13(2 \mathrm{H}$, $\mathrm{m}, \beta-\mathrm{H}^{\prime}$ and $6-\mathrm{H}$), $4.22\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{2,1} 8.4, \mathrm{~J}_{2,3} 10.1,2-\mathrm{H}\right), 4.26$ (1 $\left.\mathrm{H}, \mathrm{dd}, \mathrm{J}_{6^{\prime}, 5^{\prime}} 4.7, \mathrm{~J}_{6^{\prime}, 6} 12.4,6-\mathrm{H}^{\prime}\right), 4.3(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}), 5.0(1 \mathrm{H}$, ABd, J 12.3, PhCH), 5.04 ($1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.6$, PhCH), 5.1 (1 H , d, J 7.5, NH), 5.12 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{4,5} 9.6$, J 4,3 9.9, 4-H), $5.34(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}_{1,2} 8.4,1-\mathrm{H}\right), 5.66\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,2} 10.1, \mathrm{~J}_{3,4} 9.9,3-\mathrm{H}\right.$) and $7.25-$ 7.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); MALDI-M S of $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 850)$ $m / z 889(M+K)^{+}$and $873(M+N a)^{+}$.

$\mathrm{N}^{\text {a }}$-(tert-B utoxycarbonyl)-0-(3,4,6-tri-0-acetyl-2-deoxy-2-tetrachlorophthalimido- β-D-glucopyranosyl)-L-threonine benzyl ester 5b

To a clear solution of compounds $\mathbf{1}(0.71 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathbf{4 b}$ ($0.31 \mathrm{~g}, 1.0 \mathrm{mmol}$) in dry dichloromethane (10 ml) was added dropwiseTM SOTf ($1.66 \mu \mathrm{l}, 0.01 \mathrm{~mol}$ equiv., diluted with 1 ml of dichloromethane). A fter 1 h of stirring at room temperature the mixture was neutralized with triethylamine and evaporated under reduced pressure. The residue was purified by flash chromatography [ethyl acetate-light petroleum (3:7)] to afford the title compound 5 b ($0.62 \mathrm{~g}, 72 \%$); $[a]_{\mathrm{D}}+7.2\left(\mathrm{c} 0.66, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \gamma-\mathrm{H}_{3}\right), 1.38(9 \mathrm{H}, \mathrm{s}$, CM e 3 of Boc), 1.87, 1.99 and 2.02 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAc}$), 3.58
 $\left.\mathrm{J}_{6,6^{\prime}} 12.4,6-\mathrm{H}^{\prime}\right), 4.15-4.3\left(3 \mathrm{H}, \mathrm{m}, 2-, \alpha-\right.$ and $\left.6-\mathrm{H}^{\prime}\right), 4.36(1 \mathrm{H}, \mathrm{m}$, $\beta-\mathrm{H}), 4.98(1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.3, \mathrm{PhCH}), 5.01(1 \mathrm{H}, \mathrm{A} \mathrm{Bd}, \mathrm{J} 12.6$, PhCH), $5.09\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{4,5} 9.6, \mathrm{~J}_{4,3} 9.9,4-\mathrm{H}\right.$), $5.2(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.6, NH), 5.3 (1 H, d, J $1,28.3,1-H$), 5.56 (1 H , dd, J $3,210.1, \mathrm{~J}_{3,4}$ 9.9, 3-H) and 7.28-7.35 (5 H, m, ArH); MALDI-MS of $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 864) \mathrm{m} / \mathrm{z} 887(\mathrm{M}+\mathrm{Na})^{+}$.

N ${ }^{\text {a }}$-(tert-B utoxycarbonyl)-0-(3,4,6-tri-0-acetyl-2-deoxy-2-diacetamido- β - D -glucopyranosyl)-L -serine benzyl ester 6a To a mixture of compounds $2(0.58 \mathrm{~g}, 1.5 \mathrm{mmol}), 4 \mathrm{a}(0.44 \mathrm{~g}, 1.5$
mmol) and NIS ($0.5 \mathrm{~g}, 1.8 \mathrm{mmol}$) in dry dichloromethane (15 ml) was added dropwise TfOH (1.5μ l, diluted with 1 ml of dichloromethane) at $0^{\circ} \mathrm{C}$. The stirred mixture was left at room temperature for 30 min . It was then diluted with dichloromethane (20 ml) and washed with saturated aq. sodium hydrogen carbonate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Thecrude product was purified by flash chromatography [ethyl acetate-light petroleum (1:3)] to give compound 6a ($0.5 \mathrm{~g}, 50 \%$); [a] $]_{\mathrm{D}}-1.8$ (c $0.5, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}(250$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) 1.42 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}$), 1.95, 2.0, 2.06, 2.08 and 2.35 (total $15 \mathrm{H}, 5 \mathrm{~s}, 2 \times \mathrm{NAC}, 3 \times \mathrm{OAc}$), $3.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 9.6, \mathrm{~J}_{2,1}\right.$ 7.8, 2-H), 3.72 (1 H , ddd, J 5.4 9.5, J 5,6 4.7, J $5,6{ }^{6} 2.4,5-\mathrm{H}$), 3.75 (1 H, dd, J $1_{2} 3.1, \mathrm{~J}_{2} 10.4, \beta-\mathrm{H}$), 4.06 (1 H, dd, J $6^{\prime}, 612.2, \mathrm{~J}_{6,5} 2.4$, $\left.6-\mathrm{H}^{\prime}\right), 4.28-4.31\left(2 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}^{\prime}\right.$ and $\left.6-\mathrm{H}\right), 4.4(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}), 5.04$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=\mathrm{J}_{2}=9.5,4-\mathrm{H}$), $5.12(1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.3, \mathrm{PhCH})$, 5.19 (1 H, ABd, J 12.5, PhCH), 5.2 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{NH}$), 5.32 (1 H, d, J 7.8, 1-H), 5.78 (1 H , dd, J $\mathrm{J}_{3,2} 9.6, \mathrm{~J}_{3,4} 9.5,3-\mathrm{H}$) and 7.34 (5 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$; MALDI-MS of $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 666) \mathrm{m} / \mathrm{z} 706$ $(\mathrm{M}+\mathrm{K})^{+}$and $691(\mathrm{M}+\mathrm{Na})^{+}$.

$\mathrm{N}^{\text {a }}$-(tert-Butox ycarbonyl)-0-(3,4,6-tri-0 -acetyl-2-deox y-2-diacetamido- β - D -glucopyranosyl)-L-threonine benzyl ester $\mathbf{6 b}$

To a mixture of compounds $2(0.58 \mathrm{~g}, 1.5 \mathrm{mmol}), 4 \mathrm{~b}(0.46 \mathrm{~g}, 1.5$ mmol) and NIS ($0.5 \mathrm{~g}, 1.8 \mathrm{mmol}$) in dry dichloromethane (15 ml) was added $\mathrm{TfOH}(1.5 \mu \mathrm{l}$, diluted with 1 ml of dichloromethane) at $0^{\circ} \mathrm{C}$. A fter being stirred at room temperature for 30 min , the mixture was subjected to the usual work-up and purification [ethyl acetate-light petroleum (1:3)] to give title compound $6 \mathrm{~b}(0.5 \mathrm{~g}, 47 \%)$; $[a]_{\mathrm{D}}-6.7$ (c $0.5, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.05 (3 H,d, J 6.4, $\gamma-\mathrm{H}_{3}$), 1.4 ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}\right), 1.94,2.0$, 2.07, 2.08 and 2.34 (total $15 \mathrm{H}, 5 \mathrm{~s}, 2 \times \mathrm{NAC}, 3 \times \mathrm{OAc}$), 3.5 (1 H, dd, J ${ }_{2,3} 9.6, J_{2,1} 7.7,2-H$), 3.7 (1 H, ddd, J ${ }_{5,4} 9.5, J_{5,6} 2.4, J_{5,6}$ 4.7, 5-H), 3.97 (1 H , dd, J 6.5 2.4, J $6,6^{6} 12.2,6-H$), $4.16(1 \mathrm{H}$, dd, $\left.\mathrm{J}_{6,5}, 4.7, \mathrm{~J}_{6,6} 12.2,6-\mathrm{H}^{\prime}\right), 4.29(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H})$, $5.04\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=\mathrm{J}_{2}=9.5,4-\mathrm{H}\right), 5.12(1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.3$, PhCH), 5.18 ($1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.6, \mathrm{PhCH}$), $5.2(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{NH}$), 5.3 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.7,1-\mathrm{H}$), 5.75 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{3,4} 9.5, \mathrm{~J}_{3,2} 9.6,3-\mathrm{H}$) and 7.3 ($5 \mathrm{H}, \mathrm{m}$, aromatic); M ALDI-M S of $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{14}$ (M, 680) $\mathrm{m} / \mathrm{z} 701(\mathrm{M}+\mathrm{Na})^{+}$.

$\mathrm{N}^{\text {a }}$-(tert-Butox ycarbonyl)-0-[3,4,6-tri-0-acetyl-2-deox y-2-(2,2,2-trichloroethoxycarbonylamino)- β-D-glucopyranosylfLserine benzyl ester 7a

To a mixture of compounds $3(1.25 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathbf{4 a}(0.59 \mathrm{~g}$, 2.0 mmol) in dry dichloromethane (15 ml) was added dropwise TM SOTf ($3.3 \mu \mathrm{l}$, diluted with 1 ml of dichloromethane). A fter 1 h of stirring at room temperature the mixture was neutralized with triethylamine and evaporated to dryness. The residue was purified by flash chromatography [ethyl acetate-light petroleum (1:3)] to afford title compound 7a ($1.21 \mathrm{~g}, 80 \%$); $[a]_{\mathrm{D}}-5.6$ (c $0.95, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 1.42$ ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}\right), 1.97$ (6 $\mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}), 2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{OA}), 3.5(1 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}), 3.6(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}$), 3.79 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{\beta, a} 2.8, \mathrm{~J}_{\beta, \beta^{\prime}} 10.2, \beta-\mathrm{H}$), 4.06 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{6,5}$ $\left.2.4, J_{6,6^{\prime}} 12.4,6-H\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{6,5} 4.7, \mathrm{~J}_{6,6} 12.4,6-\mathrm{H}^{\prime}\right), 4.28$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\beta^{\prime}, \alpha} 3.5, \mathrm{~J}_{\beta^{\prime}, \beta} 10.2, \beta-\mathrm{H}^{\prime}$), $4.45(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}), 4.61$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.3,1-\mathrm{H}\right), 4.64$ and $4.77\left(2 \mathrm{H}, \mathrm{ABd}, \mathrm{J}_{1}=\mathrm{J}_{2}=12.0\right.$, CH_{2} of Teoc), 5.0 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{4,5} 9.6, \mathrm{~J}_{4,3} 9.9,4-\mathrm{H}$), 5.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.5, NH), 5.12 ($1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.3, \mathrm{PhCH}$), 5.18 ($1 \mathrm{H}, \mathrm{ABd}$, J 12.6, PhCH), 5.22 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,4} 9.9, \mathrm{~J}_{3,2} 10.2,3-\mathrm{H}$), $5.4(1 \mathrm{H}, \mathrm{d}$, J 6.45, NH) and 7.3-7.35 (5 H, m, ArH); MALDI-M S of $\mathrm{C}_{30} \mathrm{Cl}_{3} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 757) \mathrm{m} / \mathrm{z} 779(\mathrm{M}+\mathrm{Na})^{+}$

$\mathrm{N}^{\text {a }}$-(tert-B utoxycarbonyl)-0-[3,4,6-tri-0-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β-D-glucopyranosylfLthreonine benzyl ester 7b

To a clear solution of compounds $\mathbf{3}(1.25 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathbf{4 b}$ ($0.62 \mathrm{~g}, 2.0 \mathrm{mmol}$) in dry dichloromethane (15 ml) was added dropwise TM SOTf ($3.3 \mu \mathrm{l}, 0.01 \mathrm{~mol}$ equiv., diluted with 1 ml of dichloromethane) at room temperature. The mixture was stirred at the same temperature for 1 h , neutralized with triethylamine,
and concentrated under reduced pressure. The crude product was purified by flash chromatography [ethyl acetate-light petroleum (1:3)] to givetitlecompound 7 b ($1.17 \mathrm{~g}, 76 \%$), $[a]_{\mathrm{D}}-10.0$ (c $\left.0.86, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 1.17\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \gamma-\mathrm{H}_{3}\right)$, 1.42 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OA}$), 2.01 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}$), 3.42-3.45 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $5-\mathrm{H}$), $3.99\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6,5} 2.4, \mathrm{~J}_{6,6^{\prime}} 12.4,6-\right.$ H), 4.17 ($1 \mathrm{H}, \mathrm{dd}_{1} \mathrm{~J}_{6,5} 4.7, \mathrm{~J}_{6,6} 12.4,6-\mathrm{H}^{\prime}$), 4.32 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\mathrm{a}, \mathrm{\beta}} 2.2$, $\left.\mathrm{J}_{a, N H} 9.2, \alpha-H\right), 4.43(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}), 4.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.2,1-\mathrm{H}\right), 4.7$ ($2 \mathrm{H}, \mathrm{ABd}, \mathrm{CH}_{2}$ of Teoc), 4.97 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{4,5} 9.6, \mathrm{~J}_{4,3} 9.7,4-\mathrm{H}$), 5.03 (1 H , d, J 7.6, N H), 5.11-5.2 (3 H , m, 3-H , CH ${ }_{2} \mathrm{Ph}$), 5.34 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 9.2, \mathrm{NH}$) and 7.31-7.35 (5 H, m, ArH); M ALDI-M S of $\mathrm{C}_{31} \mathrm{Cl}_{3} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 771) \mathrm{m} / \mathrm{z} 793(\mathrm{M}+\mathrm{Na})^{+}$.

$\mathrm{N}^{\text {a }}$-(tert-B utoxycarbonyl)-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy- β-D-glucopyranosyl)-L-serine benzyl ester 8a

Compound 5 a ($0.42 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in 10 ml of the solvent mixture $\mathrm{CH}_{3} \mathrm{CN}$-tetrahydrofuran (THF)-EtOH ($2: 1: 1$). To this mixturewas added ethylenediamine ($60.7 \mu \mathrm{l}, 0.9$ mmol) and the mixture was heated at $60^{\circ} \mathrm{C}$ for 6 h . The excess of reagent and solvent were removed under reduced pressure and the residue was treated with pyridine (5 ml) and acetic anhydride (2 ml) for 6 h at room temperature. The mixture was dissolved in ethyl acetate (20 ml) and washed successively with water and saturated aq. sodium hydrogen carbonate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography [ethyl acetate-light petroleum (3:7)] to afford title compound $8 \mathrm{a}(0.2 \mathrm{~g}, 65 \%)$. Compound 8 a was also prepared from substrates 6 a and 7 a as follows: compound $6 \mathrm{a}(0.33 \mathrm{~g}, 0.5 \mathrm{mmol})$ was dissolved in dry methanol (5 ml). To this solution was added NaOM e (1 m solution in methanol) until the pH reached 8.5. The mixture was stirred for 1 h at room temperature, deionized with IR $120\left(\mathrm{H}^{+}\right)$resin, filtered, and concentrated under reduced pressure The residue was dissolved in pyridine (5 ml) and acetic anhydride (2 ml) was added dropwise. The mixture was left overnight at room temperature. A fter the usual work-up and purification it gave title compound $8 \mathrm{a}(0.27 \mathrm{~g}, 89 \%)$.

Compound 7a ($0.3 \mathrm{~g}, 0.4 \mathrm{mmol}$) was dissolved in acetic anhydride (5 ml). To this solution was added activated zinc $(0.15 \mathrm{~g})$. A fter 6 h of stirring at room temperature, the mixture was filtered through a Celite bed and concentrated under reduced pressure. The crude product was purified by flash chromatography [ethyl acetate-light petroleum (7:3)] to afford title compound 8a ($0.21 \mathrm{~g}, 85 \%$); $[a]_{\mathrm{D}}-12.0$ (c $0.6, \mathrm{CHCl}_{3}$) (Found: C, $55.59 ; \mathrm{H}, 6.32 ; \mathrm{N}, 4.52 . \mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{13}$ requires C , $55.76 ; \mathrm{H}, 6.45 ; \mathrm{N}, 4.48 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.41(9 \mathrm{H}, \mathrm{s}$, Boc), 1.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NAC}$), 1.99, 2.0 and 2.03 (total $9 \mathrm{H}, 3 \mathrm{~s}$, $3 \times \mathrm{OAc}), 3.6(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{\alpha, \beta} 3.5, \mathrm{~J}_{\beta, \beta^{\prime}} 10.4, \beta-H\right), 4.06\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5,6} 2.4, \mathrm{~J}_{6,6^{\prime}} 12.3,6-\mathrm{H}\right.$), 4.18-4.25 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} \beta-\mathrm{H}^{\prime}$), $4.45(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}), 4.68(1 \mathrm{H}$, $\left.d_{1} J_{1,2} 8.3,1-H\right), 5.0\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{4,3} 9.5, \mathrm{~J}_{4,5} 9.8,4-\mathrm{H}\right), 5.12$ ($1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.3, \mathrm{PhCH}$), 5.18 ($1 \mathrm{H}, \mathrm{ABd}, \mathrm{J} 12.6, \mathrm{PhCH}$), 5.24 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{3,4} 9.5, \mathrm{~J}_{3,2} 10.4,3-\mathrm{H}$), 5.43 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{NH}$), 5.53 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{NH}$) and $7.28-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(62.86$ $\mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3) 20.58,20.68$ and $21.23\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right.$ of BoC$)$, 54.01 ($\alpha-C$), 54.71 (2-C), 62.01 (6-C), 67.31, 68.44 (4-C), 69.33, 71.91 (3-C), 72.04 (5-C), 80.16 (СМ е3), 100.8 (1-C), 128.2, 128.37, 128.52, 135.39, 155.4 (N A c), 169.36, 170.4, 170.63 and 170.8 (OAc); MALDI-M S of $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{13}(\mathrm{M}, 624) \mathrm{m} / \mathrm{z} 647$ $(\mathrm{M}+\mathrm{Na})^{+}$and $590\left(\mathrm{M}+\mathrm{Na}-\mathrm{Bu}^{\mathrm{t}}\right)^{+}$.

$\mathrm{N}^{\text {a }}$-(tert-B utoxycarbonyl)-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy- β - D -glucopyranosyl)-L-threonine benzyl ester 8 b

Following the procedure for compound 8a, the threonine homologue $\mathbf{8 b}$ was prepared from starting materials $\mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 b}$ in 62,86 and 82% yield, respectively; $[a]_{\mathrm{D}}-13\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$ (Found: C, 56.28; H, 6.7; N, 4.51. $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{13}$ requires C, $56.42 ; \mathrm{H}, 6.63 ; \mathrm{N}, 4.38 \%$); $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 1.16$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.6.4, \gamma-\mathrm{H}_{3}\right), 1.40(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), 1.91(3 \mathrm{H}, \mathrm{s}, \mathrm{NAC}), 1.9,1.98$ and 1.99 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAc}$), $3.45(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.60(1 \mathrm{H}$,
ddd, $\left.J_{1,2}=J_{2, \mathrm{NH}}=8.4, \mathrm{~J}_{2,3} 10.6,2-\mathrm{H}\right), 3.98\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6,5} 2.4, \mathrm{~J}_{6,6^{\prime}}\right.$ $12.2,6-\mathrm{H}), 4.17\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6,5} 4.7, \mathrm{~J}_{6,6} 12.2,6-\mathrm{H}^{\prime}\right), 4.29(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{\alpha, \beta} 2.6, \mathrm{~J}_{\alpha, N H} 9.1, \alpha-H\right), 4.36(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}), 4.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.4\right.$, 1-H), 4.96 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{4,3} 9.6, \mathrm{~J}_{4,5} 9.7,4-\mathrm{H}$), $5.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 5.24 ($\left.1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{3,2} 10.6, \mathrm{~J}_{3,4} 9.6,3-\mathrm{H}\right), 5.38\left(1 \mathrm{H}, \mathrm{J}_{a, N H} 9.1, \mathrm{NH}\right.$), $5.5\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{2, \mathrm{NH}} 8.4,2-\mathrm{NH}\right)$ and $7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(62.68$ $\mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}$) $17.16(\gamma-\mathrm{C}), 20.6,23.28$ and 28.27 (CH_{3} of Boc), $55.18(2-\mathrm{C}), 58.24(\alpha-\mathrm{C}), 61.84(6-\mathrm{C}), 67.04\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.37$ (4C), 71.49 ($5-\mathrm{C}$), 71.83 ($3-\mathrm{C}$), 75.04 ($\beta-\mathrm{C}$), $79.87\left(\mathrm{CM} \mathrm{e}_{3}\right), 98.56$ (1-C), 128.2, 128.37 and 128.53 (arom C), $153.54(\mathrm{NAC})$ and 169.37, 170.34 and 170.63 (OAC); M A LDI-M S of $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{13}$ $(\mathrm{M}, 638) \mathrm{m} / \mathrm{z} 661(\mathrm{M}+\mathrm{Na})^{+}$and $638\left(\mathrm{M}^{+}\right)$.

N ${ }^{\text {a/-(F luoren-9-ylmethox ycarbonyl)-0 }}$-[3,4,6-tri-0 -acetyl-2-deoxy-2-(2,2,2-trichloroethox ycarbonylamino)- β-D-gluco-pyranosyl]-L-serine allyl ester 10a

To a mixture of compounds 3 ($0.62 \mathrm{~g}, 1.0 \mathrm{mmol}$) and $9 \mathrm{a}(0.36 \mathrm{~g}$, $1.0 \mathrm{mmol})$ in dry dichloromethane (10 ml) was added dropwise TM SOTf (1.6μ l, diluted with 1 ml of dichloromethane) at room temperature. A fter 1 h of stirring at the same temperature the solution was neutralized with triethylamine and concentrated to dryness. The residue was purified by flash chromatography [ethyl acetate-light petroleum (3:7)] to give title compound 10a ($0.7 \mathrm{~g}, 90 \%$); $[a]_{\mathrm{D}}-2.46$ (c 1.0, CHCl_{3}) (Found: C, 51.93; H, 4.67; $\mathrm{N}, 3.16 . \mathrm{C}_{36} \mathrm{H}_{39} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{14}$ requires C , 52.09; $\mathrm{H}, 4.73 ; \mathrm{N}$, $3.37 \%), \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{H} \mathrm{z} \mathrm{CDCl}_{3}\right) 2.0,2.01$ and 2.05 (total $9 \mathrm{H}, 3 \mathrm{~s}$, $3 \times 0 \mathrm{Ac}), 3.55-3.7(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 3.91\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\beta, \alpha} 3.0\right.$, $\left.J_{\beta, \beta} 10.4, \beta-H\right), 4.1\left(1 \mathrm{H}, \mathrm{dd}_{1} \mathrm{~J}_{6.5} 2.4, \mathrm{~J}_{6,6}, 12.4,6-\mathrm{H}\right), 4.2-4.3$ (3 $\mathrm{H}, \mathrm{m}, \mathrm{CH}$ of $\left.\mathrm{Fmoc}, 6-\mathrm{H}^{\prime}, \alpha-\mathrm{H}\right), 4.4-4.68\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right.$ of allyl, CH_{2} of Teoc, CH_{2} of F moc, β - H^{\prime}), 4.7 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,1-\mathrm{H}$), 5.02 ($1 \mathrm{H}, \mathrm{dd}_{1} \mathrm{~J}_{4,5} 9.4, \mathrm{~J}_{4,3} 9.6,4-\mathrm{H}$), $5.2\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{3,4} 9.6, \mathrm{~J}_{3,2}\right.$ 10.6, $3-\mathrm{H}$), $5.3(3 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2=\mathrm{CH}$ of allyl, NH), $5.65(1 \mathrm{H}, \mathrm{d}$, J 8.8, NH) , $5.9(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ of allyl), 7.27-7.41 ($4 \mathrm{H}, \mathrm{m}$), 7.61 $\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=\mathrm{J}_{2}=6.4\right)$ and $7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4)$ (together ArH); FAB-M S of $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 830) \mathrm{m} / \mathrm{z}$ 1003/1005 (M + $\mathrm{NaI}+\mathrm{Na})^{+}$and $853 / 855(\mathrm{M}+\mathrm{Na})^{+}$.

N ${ }^{\text {a }}$-(Fluoren-9-ylmethox ycarbonyl)-0-[3,4,6-tri-0 -acetyl-2-deoxy-2-(2,2,2-trichloroethox ycarbonylamino)- β-D-gluco-pyranosyl]-L-threonine allyl ester 10b

To a mixture of compounds $\mathbf{3}(0.4 \mathrm{~g}, 0.75 \mathrm{mmol})$ and $9 \mathrm{~b}(0.29 \mathrm{~g}$, 0.75 mmol) in dry dichloromethane (10 ml) was added dropwise TM SOTf (1.2μ l, diluted with 1 ml of dichloromethane). The continuously stirred mixture was left for 1 h under N_{2} at room temperature. It was then neutralized with triethylamine and evaporated. The residue was purified by flash chromatography [ethyl acetate-light petroleum (3:7)] to give title compound 10b ($0.55 \mathrm{~g}, 87 \%$); $[a]_{\mathrm{D}}-11.35\left(\mathrm{c} 0.74, \mathrm{CH} \mathrm{Cl}_{3}\right)$ (Found: $\mathrm{C}, 52.48 ; \mathrm{H}$, 4.79; $\mathrm{N}, 3.09 . \mathrm{C}_{37} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{14}$ requires C , 52.65; $\mathrm{H}, 4.89$; N , $3.31 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \gamma-\mathrm{H}_{3}\right), 2.01$, 2.03 and 2.05 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times 0 \mathrm{Ac}$), $3.55(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.63$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.08\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{6,5} 2.4, \mathrm{~J}_{6,6^{\prime}} 12.4,6-\mathrm{H}\right), 4.2-4.32(3$ $\mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}, 6-\mathrm{H}^{\prime}, \mathrm{CH}$ of Fmoc), 4.35-4.48 ($3 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}, \mathrm{CH}_{2}$ of Fmoc), 4.60-4.72 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ of Teoc, $\mathrm{CH}_{2} \mathrm{O}$ of allyl), 4.7 (1 H, d, J ${ }_{1,2} 8.1,1-H$), 5.04 (1 H , dd, J ${ }_{4,5} 9.4, J_{4,3} 9.6,4-H$), 5.15 (1 H, br d, NH $), 5.2-5.3\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$ of allyl), $5.7(1 \mathrm{H}$, d, J $8.8, \mathrm{NH}$) $5.9\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ of allyl), $7.27-7.41(4 \mathrm{H}$, m), $7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2)$ and $7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2)$ (together ArH); FAB-M S of $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 844) \mathrm{m} / \mathrm{z} 867 / 869(\mathrm{M}+\mathrm{Na})^{+}$.
$\mathrm{N}^{\text {a }}$-(F luoren-9-ylmethox ycarbonyl)-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy- β-D-glucopyranosyl)-L-serine allyl ester 11a
Compound 10a ($0.2 \mathrm{~g}, 0.25 \mathrm{mmol}$) was treated with zinc (0.1 g) and acetic anhydride (5 ml) for 6 h at room temperature. A fter the usual work-up as mentioned earlier, and purification by flash chromatography [ethyl acetate-light petroleum (7:3)], title compound 11a ($0.16 \mathrm{~g}, 85 \%$) was obtained; $[a]_{\mathrm{D}}-7.1$ (c 0.5 , CHCl_{3}) (Found: $\mathrm{C}, 60.50 ; \mathrm{H}, 5.67 ; \mathrm{N}, 4.18 . \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{13}$ requires $\mathrm{C}, 60.33 ; \mathrm{H}, 5.78 ; \mathrm{N}, 4.02 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right) 1.83$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{NAC}), 2.0,2.01$ and 2.05 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAc}$), 3.65
($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $3.8(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.85\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\alpha, \beta} 3.0, \mathrm{~J}_{\beta, \beta^{\prime}} 10.4\right.$ $\beta-H$), 4.1 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{6,5} 2.4, \mathrm{~J}_{6,6}, 12.4,6-\mathrm{H}$), 4.15-4.27 (3 H , m, $\alpha-$ $\mathrm{H}, 6-\mathrm{H}^{\prime}, \mathrm{CH}$ of Fmoc), 4.35-4.55 ($3 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}^{\prime}, \mathrm{CH}_{2}$ of F moc), 4.6-4.7 (3 H, br d, 1-H, CH $\mathrm{C}_{2} \mathrm{O}$ of allyl), $5.01(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{4,3} 9.6, \mathrm{~J}_{4,5} 9.5,4-\mathrm{H}\right), 5.15-5.4\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ of allyl), $5.5(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{NH}), 5.79\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{NH}, 2} 9.0,2-\mathrm{NH}\right), 5.9(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$ of allyl), $7.27-7.41(4 \mathrm{H}, \mathrm{m}), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2)$ and $7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2)$ (together ArH$) ; \delta_{\mathrm{c}}\left(62.68 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 20.59, 20.65, 20.68, 23.15 (CH_{3} of NAc), 47.22 (CH of Fmoc), $54.24(\alpha-\mathrm{C}), 54.55(2-\mathrm{C}), 62.01(6-\mathrm{C}), 66.27\left(\mathrm{CH}_{2}\right.$ of Fmoc$)$, 66.84, 68.47 ($4-\mathrm{C}$), 71.99 (3-C), 72.14 ($5-\mathrm{C}$), 100.82 (1-C), 118.66, 119.98, 125.09, 127.14, 127.76, 131.42, 141.32, 143.69 143.83 (arom C of Fmoc), 169.26 (NCO), 169.34, 170.51, 170.61 and 170.84 (OCO); FAB-M S of $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{13}(\mathrm{M}, 696)$ $\mathrm{m} / \mathrm{z} 735(\mathrm{M}+\mathrm{K})^{+}$and $719(\mathrm{M}+\mathrm{Na})^{+}$.
$\mathrm{N}^{\text {a }}$-(Fluoren-9-ylmethox ycarbonyl)-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy- β-D-glucopyranosyl)-L-threonine allyl ester 11b
Compound 10b ($0.2 \mathrm{~g}, 0.23 \mathrm{mmol}$) was treated with zinc (0.1 g) and acetic anhydride (5 ml) for 6 h at room temperature. A fter the usual work-up and purification title compound 11 b (0.13 g , 81\%) was obtained; $[\alpha]_{\mathrm{D}}-12.86$ (c $0.51, \mathrm{CHCl}_{3}$) (Found: C, 60.57; H, 6.08; N, 3.71. $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{13}$ requires C, 60.8; $\mathrm{H}, 5.97$; $\mathrm{N}, 3.94 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \gamma-\mathrm{H}_{3}\right), 1.92$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NAC}$), 2.00, 2.02 and 2.04 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAC}$), 3.62-3.73 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $5-\mathrm{H}$), $4.22\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{6,5} 2.4, \mathrm{~J}_{6,6} 12.4\right.$ $6-\mathrm{H}), 4.25-4.28\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\prime}, \mathrm{CH}\right.$ of F moc$), 4.3-4.45(4 \mathrm{H}, \mathrm{m}$, CH_{2} of Fmoc, β - and $\left.\alpha-\mathrm{H}\right), 4.62\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right.$ of allyl), 4.7 ($1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 8.2,1-\mathrm{H}$), $5.02\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{4,5} 9.5, \mathrm{~J}_{4,3} 9.6,4-\mathrm{H}\right.$), 5.23 ($1 \mathrm{H}, \mathrm{dd}_{5} \mathrm{~J}_{3,2} 10.4, \mathrm{~J}_{3,4} 9.6,3-\mathrm{H}$), $5.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right.$ of allyl), 5.54 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{NH}$), 5.75 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}{ }_{2, \mathrm{NH}} 9.0,2-\mathrm{NH}$), 5.9 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$ of allyl), 7.26-7.41 ($4 \mathrm{H}, \mathrm{m}$), 7.61-7.65 (2 $\mathrm{H}, \mathrm{m})$ and $7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2)$ (together ArH$) ; \delta_{\mathrm{c}}(62.68 \mathrm{M} \mathrm{H} \mathrm{z}$ $\left.\mathrm{CDCl}_{3}\right) 16.84(\gamma-\mathrm{C}), 20.6,20.67,23.2\left(\mathrm{CH}_{3}\right.$ of NAC$), 47.2(\mathrm{CH}$ of Fmoc), $55.26(2-\mathrm{C}), 58.24(\alpha-\mathrm{C}), 61.96(6-\mathrm{C}), 66.06\left(\mathrm{CH}_{2}\right.$ of Fmoc$), 67.2,68.51$ (4-C), 71.72 (3-C), 71.9 (5-C), 74.27 ($\beta-\mathrm{C}$), 98.49 (1-C), 118.49, 119.43, 125.24, 127.07, 127.09, 127.69, 131.71 (arom C of Fmoc), 141.29, 143.78, 143.99, 156.81, 169.37, 169.81, 170.27 and 170.62; FAB-MS of $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{13} \quad(\mathrm{M}, \quad 710) \mathrm{m} / \mathrm{z} \quad 883 \quad(\mathrm{M}+\mathrm{Nal}+\mathrm{Na})^{+}, \quad 749$ $(\mathrm{M}+\mathrm{K})^{+}$and $733(\mathrm{M}+\mathrm{Na})^{+}$
$\mathrm{N}^{\text {a }}$-(Fluoren-9-ylmethox ycarbonyl)-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy- β-D-glucopyranosyl)-L-serine pentafluorophenyl ester 14a
To a stirred solution of compounds $\mathbf{3}(1.25 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathbf{1 2 a}$ $(1.0 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dry dichloromethane (20 ml) at room temperaturewas added TM SOTf ($3.2 \mu \mathrm{lin} 1 \mathrm{ml}$ of dichloromethane) dropwise. The mixture was stirred for 1 h at room temperature and then concentrated under reduced pressure to give a thick syrup, which was purified by flash chromatography (anhydrous silica gel) with ethyl acetate-light petroleum (3:7) to afford compound 13a ($1.66 \mathrm{~g}, 87 \%$); $[a]_{\mathrm{D}}-9.06$ (c $1.17, \mathrm{CHCl}_{3}$) (Found: C, 48.78; $\mathrm{H}, 3.49 ; \mathrm{N}, 3.08 . \mathrm{C}_{39} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{14}$ requires C, 48.99; H, 3.58; N, 2.93\%); $\delta_{\mathrm{H}}\left(600 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 2.02(9 \mathrm{H}, \mathrm{s}$, $3 \times \mathrm{OAC}), 3.6\left(1 \mathrm{H}, \mathrm{ddd}^{\prime} \mathrm{J}_{2 . \mathrm{NH}} 6.54, \mathrm{~J}_{2.1} 8.2, \mathrm{~J}_{2,3} 10.2,2-\mathrm{H}\right.$), 3.66 ($1 \mathrm{H}, \mathrm{ddd}^{\prime} \mathrm{J}_{6,5} 2.4, \mathrm{~J}_{5,4} 9.6,5-\mathrm{H}$), 3.97 ($1 \mathrm{H}, \mathrm{dd}^{2}, \mathrm{~J}_{\beta, a} 2.8, \mathrm{~J}_{\beta, \beta^{\prime}} 10.2$, $\beta-\mathrm{H}$), 4.12 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{6,5} 2.4, \mathrm{~J}_{6,6^{\prime}} 12.3,6-\mathrm{H}$), 4.2 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{6}, 5$ 4.7, J $\left.6^{\prime}, 612.3,6-\mathrm{H}^{\prime}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 7.1, \mathrm{~J}_{2} 7.6, \mathrm{CH}\right.$ of Fmoc), 4.35 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 7.1, \mathrm{~J}_{2} 10.1, \mathrm{CH}$ H of Fmoc), $4.42\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\beta^{\prime}, \alpha}\right.$ $\left.3.5, J_{\beta^{\prime}, \beta}, \beta-H^{\prime}\right), 4.52\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 7.6, \mathrm{~J}_{2} 10.1, \mathrm{CHH}\right.$ of Fmoc), 4.57 ($1 \mathrm{H}, \mathrm{br}$ s, CH H of Teoc), 4.67 ($2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{1,2} 8.2,1-\mathrm{H}$ and CHH of Teoc), 4.88 ($1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}$), 5.06 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{4,5} 9.6, \mathrm{~J}_{4,3}$ 9.9, 4-H), $5.2\left(1 \mathrm{H}, \mathrm{br}\right.$ s, N H), 5.23 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{3,4} 9.9 \mathrm{~J}_{3,2} 10.2,3-$ H), $5.93(1 \mathrm{H}, \mathrm{br}$ s, NH), 7.28-7.31 ($2 \mathrm{H}, \mathrm{m}$), 7.36-7.39 (2 H , m), 7.59-7.61 ($2 \mathrm{H}, \mathrm{m}$) and $7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2)$ (together ArH); $\delta_{\mathrm{c}}\left(62.68 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.52,47.05$ (CH of F moc$), 54.11(\alpha-\mathrm{C})$ $56.12(2-\mathrm{C}), 61.83(6-\mathrm{C}), 67.23\left(\mathrm{CH}_{2}\right.$ of Fmoc$), 68.43(4-\mathrm{C})$, 71.63 (3-C), 71.98 ($5-\mathrm{C}$), 100.51 (1-C), 120.0, 127.12, 127.78, 143.52 , 143.65 (arom C of Fmoc), 141.26 (Pfp), 154.25, 155.95
(NCO), 166.17, 169.34, 170.56 and 170.67 (OCO); FAB-M S of $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 956) \mathrm{m} / \mathrm{z} 993 / 995(\mathrm{M}+\mathrm{K})^{+}, 977 / 979$ $(\mathrm{M}+\mathrm{Na})^{+}$and $955 / 957(\mathrm{M}+\mathrm{H})^{+}$

Compound 13a (1.5 g .1 .57 mmol) was treated with zinc (0.75 g) and acetic anhydride (10 ml) at room temperature for 6 h . The mixture was filtered through a Celite bed and washed with dry dichloromethane. The filtrate was evaporated to dryness and the residue was purified by flash chromatography (anhydrous silica gel) using ethyl acetate-light petroleum (7:3) to afford title compound $\mathbf{1 4 a}(1.07 \mathrm{~g}, 83 \%)$, $[a]_{\mathrm{D}}-11.07$ (c 1.21, CHCl_{3}) (lit., ${ }^{4}-10.0$); mp $186-187^{\circ} \mathrm{C}$ (lit., ${ }^{5} 184^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(600$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}$), 2.01 and $2.03(9 \mathrm{H}, 2 \mathrm{~s}$, $3 \times \mathrm{OAc}$), $3.68(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.74\left(1 \mathrm{H}, \mathrm{ddd}^{\prime} \mathrm{J}_{2, \mathrm{NH}} 6.45, \mathrm{~J}_{2,1} 8.2\right.$, $\left.J_{2,3} 10.02,2-H\right), 3.97\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{\beta, \alpha} 2.78, \mathrm{~J}_{\beta, \beta^{\prime}} 10.57, \beta-\mathrm{H}\right), 4.12$ ($1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{6,5} 2.4, \mathrm{~J}_{6,6} 12.4,6-\mathrm{H}$), $4.2\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{6^{\prime}, 5} 4.8, \mathrm{~J}_{6^{\prime}, 6} 12.4\right.$, $\left.6-\mathrm{H}^{\prime}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 6.97, \mathrm{~J}_{2} 7.34, \mathrm{CH}\right.$ of Fmoc), $4.39(1 \mathrm{H}$, $\left.\mathrm{dd}^{\prime} \mathrm{J}_{\alpha, \beta^{\prime}} 4.0, \mathrm{~J}_{\beta, \beta^{\prime}} 10.57, \beta-\mathrm{H}^{\prime}\right), 4.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 7.6, \mathrm{~J}_{2} 10.63\right.$, CHH of Fmoc), 4.48 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 7.13, \mathrm{~J}_{2} 10.63$, CHH of F moc), 4.83 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2,1-\mathrm{H}$), 4.86 (1 H, ddd, $\mathrm{J}_{\alpha, \beta} 2.8, \mathrm{~J}_{q, \beta}, 4.0$, $\left.\mathrm{J}_{a, N H} 7.51, \alpha-H\right), 5.05\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{4,3}=\mathrm{J}_{4,5}=9.6,4-\mathrm{H}\right), 5.27(1 \mathrm{H}$, dd, J $\left.3,49.6, J_{3,2} 10.02,3-\mathrm{H}\right), 5.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.45,2-\mathrm{NH}), 6.1(1 \mathrm{H}$, d, J $7.27, \mathrm{NH}$), $7.3(2 \mathrm{H}, \mathrm{m}), 7.38(2 \mathrm{H}, \mathrm{m}), 7.64\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 5.3\right.$, $\mathrm{J}_{2} 7.41$) and $7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.27)$ (together ArH$) ; \delta_{\mathrm{c}}(62.68$; CDCl_{3}) 20.58, 20.65, 23.21 (CH_{3} of NAC), 47.11 (CH of Fmoc), $54.3(\alpha-\mathrm{C}), 54.9(2-\mathrm{C}), 61.9(6-\mathrm{C}), 67.22$ (CH_{2} of Fmoc), 68.25 ($\beta-C$), 68.37 ($4-C$), 71.91 (3-C), 72.12 ($5-C$), 100.58 (1-C), $119.98,125.15,127.77,141.3,143.66,143.72,156.04,166.28$, $169.35,170.62,170.89$ and $170.95 ;$ FAB-M S of $\mathrm{C}_{38} \mathrm{~F}_{5} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{13}$ $(\mathrm{M}, 822) \mathrm{m} / \mathrm{z} 995(\mathrm{M}+\mathrm{Nal}+\mathrm{Na})^{+}, 861(\mathrm{M}+\mathrm{K})^{+}, 845$ $(\mathrm{M}+\mathrm{Na})^{+}$and $823(\mathrm{M}+\mathrm{H})^{+}$.

N ${ }^{\text {a }}$-(F luoren-9-ylmethox ycarbonyl)-0-(2-acetamido-3,4,6-tri0 -acetyl-2-deoxy- β-D-glucopyranosyl)-L-threonine pentafluorophenyl ester 14b

To a stirred solution of compounds $\mathbf{3}(0.6 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathbf{1 2 b}$ ($0.5 \mathrm{~g}, 1.0 \mathrm{mmol}$) in dry dichloromethane (10 ml) was added dropwise TM SOTf ($1.6 \mu \mathrm{l}$ in 1 ml of dichloromethane) at room temperature. A fter 1 h of stirring at room temperature the mixture was concentrated under reduced pressure and the residue was purified by flash chromatography (anhydrous silica gel) using ethyl acetate-light petroleum (3:7) as eluent to afford compound 13b ($0.77 \mathrm{~g}, 80 \%$) (Found: C, 49.36; H, 3.69; N, 3.01. $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{Cl}_{3} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{14}$ requires C, 49.52; H, 3.74; N, 2.88\%); [a] $]_{\mathrm{D}}$ -22.2 (c 1.0, CHCl_{3}); $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.30$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2$, $\gamma-\mathrm{H}), 1.99,2.01$ and 2.04 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAC}), 3.65(2 \mathrm{H}, \mathrm{m}$, 2- and $5-\mathrm{H}), 4.12\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{6,5} 2.4, \mathrm{~J}_{6,6^{\prime}} 12.3,6-\mathrm{H}\right), 4.16-4.38$ ($3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\prime}, \mathrm{CH}$ of $\mathrm{Fmoc}, \beta-\mathrm{H}$), $4.49\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 7.6, \mathrm{~J}_{2}\right.$ 10.1, CHH of Fmoc), 4.6-4.8 ($4 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}, \mathrm{CH}_{2}$ of Teoc, CHH of Fmoc), 4.72 ($1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1,2} 8.1,1-\mathrm{H}$), $5.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.5$ 9.6, J 4,3 9.9, 4-H), 5.23 (1 H , dd, J ${ }_{3,4} 9.9$, J $\mathrm{J}_{3,2} 10.2,3-\mathrm{H}$), 5.37 (1 H, d, J 8.3, NH), 5.96 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0, \mathrm{NH}$), 7.26-7.4 (4 H, m), $7.65(2 \mathrm{H}, \mathrm{m})$ and $7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2)$ (together ArH); $\delta_{\mathrm{c}}(62.68$; $\left.\mathrm{CDCl}_{3}\right) 16.28(\gamma-\mathrm{C}), 20.36,20.51,20.58,47.04$ (CH of F moc), $56.28(2-\mathrm{C}), 58.60(\alpha-\mathrm{C}), 61.75(6-\mathrm{C}), 67.56\left(\mathrm{CH}_{2}\right.$ of Fmoc$)$, 68.37 (4-C), 71.49 (3-C) 71.72 ($5-\mathrm{C}$), 72.77, 74.51 ($\beta-\mathrm{C}$), 98.02 (1-C), 119.93, 125.13, 127.07, 127.72, 141.20, 141.23 (Pfp), 143.60, 154.27, 156.56 (NCO), 166.40, 169.29, 170.57 and 170.93; FAB M S of $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{Cl}_{3} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{14}(\mathrm{M}, 970) \mathrm{m} / \mathrm{z} 991 / 993$ $(\mathrm{M}+\mathrm{Na})^{+}$
Compound 13b ($0.51 \mathrm{~g}, 0.51 \mathrm{mmol}$) was treated with activated zinc (0.25 g) and acetic anhydride (2 ml) at room temperature for 6 h . A fter the usual work-up and purification using anhydrous silica gel column chromatography [ethyl acetatelight petroleum ($7: 3$)] compound 14b ($0.34 \mathrm{~g}, 80 \%$) was obtained, $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \gamma-\mathrm{H}_{3}\right), 1.93$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NAC}$), 1.98, 2.01 and 2.03 (total $9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAC}$), 3.65
 $\left.8.04, J_{2,1} 8.2, J_{2,3} 10.2,2-H\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,6} 2.3, \mathrm{~J}_{6,6} 12.2,6-\right.$ H), 4.2 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6,5} 4.7, \mathrm{~J}_{6 ; 6} 12.2,6-\mathrm{H}^{\prime}$), $4.24\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{1} 7.1\right.$, $\mathrm{J}_{2} 7.4, \mathrm{CH}$ of Fmoc), $4.35-4.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of Fmoc), 4.56 (1
$\mathrm{H}, \mathrm{m}, \beta-\mathrm{H}), 4.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\alpha, \beta} 2.8, \mathrm{~J}_{\alpha, \text { NH }} 9.0, \alpha-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $8.2,1-H), 5.05\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{4,3} 9.5, \mathrm{~J}_{4,5} 9.7,4-\mathrm{H}\right.$), 5.25 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,4}$ 9.5, J 3,2 10.2, 3-H), 5.6 (1 H, d, J $8.04,2-\mathrm{NH}$), 6.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.0, NH) , 7.25-7.4 (4 H , m), $7.63\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1} 5.13, \mathrm{~J}_{2} 7.41\right.$) and 7.75 (2 H, d, J 7.27) (together ArH); $\delta_{\mathrm{c}}\left(62.68 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) $16.51(\gamma-\mathrm{C}), 20.43,20.59,23.39\left(\mathrm{CH}_{3}\right.$ of NAC$), 47.17$ (CH of F moc), $55.22(2-\mathrm{C}), 58.71(\alpha-\mathrm{C}), 61.89(6-\mathrm{C}), 67.38\left(\mathrm{CH}_{2}\right.$ of F moc), 68.42 (4-C), 71.82 (5-C), 73.19 (3-C), 98.2 (1-C), 119.95, 125.19, 127.06, 127.11, 127.73, 128.21, 141.31 (Pfp), 143.64, 156.64 (N CO), 166.48, 169.26, 170.39, 170.6 and 171.15; FA B M S m/z $875(\mathrm{M}+\mathrm{K})^{+}, 859(\mathrm{M}+\mathrm{Na})^{+}$and $837(\mathrm{M}+\mathrm{H})^{+}$. All other physical data of products $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ were identical with literature ${ }^{5,6}$ values.

A cknowledgements

This work was supported by the Alexander von HumboldtStiftung, the Deutsche Forschungsgemeinschaft, and the Fonds der Chemischen Industrie. Helpful discussions with J. C. Castro-Palomino, W. Dullenkopf and J. Rademann are gratefully acknowledged. U. K. S. is grateful for an AvH Fellowship.

References

1 C. R. Torres and G. W. H art, J. Biol. Chem., 1984, 259, 3308; G. W. H art, R. S. H altiwanger, G. D. Holz and W. G. K elly, A nnu. R ev. B iochem., 1989, 58, 841.
2 L. S. G riffith, M . M athes and B. Schmitz, J. N eurosci. Res., 1995, 41 270, and references therein
3 R. S. H altiwanger, W. G. K elly, E. P. Roquemore, M . A . Blomberg, L.-Y. D ong, L. K reppel, T.-Y. Chou and G. W. H art, B iochem. Soc. Trans., 1992, 20, 264
4 A . Vargas-Berenguel, M. M eldal, H. Paulsen and K. Bock, J. C hem Soc., Perkin Trans. 1, 1994, 2615; E. M einjohanns, M . M eldal, H. Paulsen and K. Bock, J. Chem. Soc., Perkin Trans. 1, 1995, 405; E. M einjohanns, A . Vargas-Berenguel, M. M eldal, H. Paulsen and K. Bock, J. Chem. Soc., Perkin Trans. 1, 1995, 2165.

5 K. J. Jensen, P. R. Hansen, D. Venugopal and G. Barany, J. Am. Chem. Soc., 1996, 118, 3148.
6 U. Ellervik and G. M agnusson, Carbohydr. Res., 1996, 280, 251; L. Szabo, J. Ramza, C. L angdon and R . Polt, C arbohydr. R es., 1995, 274, 11.

7 H. Paulsen, A ngew. Chem., 1990, 102, 851; A ngew. Chem., Int. Ed. Engl., 1990, 29, 823.
8 H. G. G arg, K. von dem Bruch and H. K unz, A dv. C arbohydr. Chem. Biochem., 1994, 50, 277; H. K unz, A ngew. Chem., 1987, 99, 297; A ngew. C hem., Int. E d. E ngl., 1987, 26, 294.
9 M. M eldal and K. J. Jensen, J. C hem. Soc., Chem. Commun., 1990, 483; M. M eldal and K. Bock, Tetrahedron Lett., 1990, 31, 6987; A . M . Jansson, M . M eldal and K . Bock, Tetrahedron Lett., 1990, 31, 6991; S. Peters, T. Bielfeldt, M. M eldal, K. Bock and H. Paulsen, Tetrahedron Lett., 1992, 33, 6445; K. J. Jensen, M. M eldal and K . Bock, J. C hem. Soc., Perkin Trans. 1, 1993, 2119.
10 J. Banoub, P. Boullanger and D. Lafont, Chem. Soc. Rev., 1992, 92, 1167
11 M. Schultz and H. Kunz, Tetrahedron Lett., 1992, 33, 5319; Tetrahedron: A symmetry, 1993, 4, 1205.
12 H. Paulsen and J.-P. Hölck, Liebigs A nn. Chem., 1982, 1121; H. Paulsen, M. Paal and M . Schultz, Tetrahedron Lett., 1983, 24, 1759.

13 For the synthesis of compound 1, see J. C. Castro-Palomino and R. R. Schmidt, (a) Tetrahedron Lett., 1995, 36, 5343; (b) L iebigs Ann. Chem., 1996, 1623; (c) the N-TCP group was independently investigated for glucosamine with the pent-4-en-1-yl group at the anomeric oxygen as leaving group; see ref. 17.
14 For the synthesis of compound 2, see J. C. Castro-Palomino and R . R . Schmidt, Tetrahedron Lett., 1995, 36, 6871.
15 For the synthesis of compound 3, see (a) H. Paulsen and B. Helpap, C arbohydr. Res., 1991, 216, 289; (b) W. Dullenkopf, J. C. C astroPalomino, L. M anzoni and R. R. Schmidt, C arbohydr. Res., 1996, 296, 135.
16 Compounds $\mathbf{4 a}, \mathbf{b}$ are commercially available.
17 J. S. D ebenham, R. M adsen, C. Roberts and B. F raser-R eid, J. A m. C hem. Soc., 1995, 117, 3302.
18 Instead of Teoc the abbreviation Troc has also been used; see: T. B. Windholz and D. B. R. Johnston, Tetrahedron Lett., 1967, 2555, and references therein.
19 For the use of N -Teoc in a glycosyl donor, see: S. K usumoto, H. Yoshimura, M . Imoto, T. Shimamoto and T. Shiba, Tetrahedron Lett., 1985, 26, 909.
20 M. Ciommer and H. K unz, Synlett, 1991, 593.
21 I. Schön and L. K isfaludy, Synthesis, 1986, 303.
22 U. K. Saha and R. R. Schmidt, unpublished work.

Paper 7/00210F
R eceived 8th J anuary 1997 A ccepted 20th February 1997

[^0]: \dagger This paper is deemed to be Part 77 of our series ' Glyc lysylimidates'

